Modeling the temporal dynamics of distinctive feature landmark detectors for speech recognition.
نویسندگان
چکیده
This paper elaborates on a computational model for speech recognition that is inspired by several interrelated strands of research in phonology, acoustic phonetics, speech perception, and neuroscience. The goals are twofold: (i) to explore frameworks for recognition that may provide a viable alternative to the current hidden Markov model (HMM) based speech recognition systems and (ii) to provide a computational platform that will facilitate engaging, quantifying, and testing various theories in the scientific traditions in phonetics, psychology, and neuroscience. This motivation leads to an approach that constructs a hierarchically structured point process representation based on distinctive feature landmark detectors and probabilistically integrates the firing patterns of these detectors to decode a phonological sequence. The accuracy of a broad class recognizer based on this framework is competitive with equivalent HMM-based systems. Various avenues for future development of the presented methodology are outlined.
منابع مشابه
Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملمدلسازی بازشناسی واجی کلمات فارسی
Abstract of spoken word recognition is proposed. This model is particularly concerned with extraction of cues from the signal leading to a specification of a word in terms of bundles of distinctive features, which are assumed to be the building blocks of words. In the model proposed, auditory input is chunked into a set of successive time slices. It is assumed that the derivation of the underly...
متن کاملLandmark detection for distinctive feature-based speech recognition
This work is a component of a proposed knowledge-based speech recognition system which uses landmarks to guide the search for distinctive features. In the speech signal, landmarks identify times when the acoustic manifestations of the linguistically motivated distinctive features are most salient. This paper describes an algorithm for automatically detecting acoustically abrupt landmarks. Some ...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملAutomatic context-sensitive measurement of the acoustic correlates of distinctive features at landmarks
This paper models speech recognition as the estimation of distinctive feature values at articulatory landmarks 8]. Toward this end, we propose modeling each distinctive feature as a table containing phonetic contexts, a list of signal measurements (acoustic correlates) which provide information about the feature in each context, and, for each context, a statistical model for evaluating the feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 124 3 شماره
صفحات -
تاریخ انتشار 2008